共享模型之管程


共享问题

Java 的体现

线程出现问题的根本原因是因为线程上下文切换,导致线程里的指令没有执行完就切换执行其它线程了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
static int counter = 0;
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
counter++;
}
}, "t1");

Thread t2 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
counter--;
}
}, "t2");

t1.start();
t2.start();
t1.join();
t2.join();

log.debug("{}",counter);
}

问题分析

以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作,要彻底理解,必须从字节码来进行分析

例如对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:

1
2
3
4
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
iadd // 自增
putstatic i // 将修改后的值存入静态变量i

而对应i--也是类似:

1
2
3
4
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
isub // 自减
putstatic i // 将修改后的值存入静态变量i

可以看到count++count-- 操作实际都是需要这个4个指令完成的,那么这里问题就来了!Java 的内存模型如下,完成静态变量的自增,自减需要在主存和工作内存中进行数据交换:

1583569253392

如果代码是正常按顺序运行的(单线程),那么count的值不会计算错

1583569326977

出现负数的情况:

1583569380639

出现正数的情况:

1583569416016

临界区 Critical Section

  • 一个程序运行多线程本身是没有问题的

  • 问题出现在多个线程共享资源的时候

    • 多个线程同时对共享资源进行读操作本身也没有问题
    • 问题出现在对共享资源同时进行读写操作时发生指令交错就有问题了
  • 临界区:一段代码内如果存在对共享资源的多线程读写操作,那么称这段代码为临界区,如

1
2
3
4
5
6
7
8
9
static int counter = 0;
static void increment()
{// 临界区
counter++;
}
static void decrement()
{// 临界区
counter--;
}

竞态条件 Race Condition

多个线程在临界区执行,那么由于代码指令的执行序列不同而导致的结果无法预测问题,称为竞态条件

synchronized

应用之互斥

为了避免临界区中的竞态条件发生,由多种手段可以达到

  • 阻塞式解决方案:synchronized ,Lock
  • 非阻塞式解决方案:原子变量,CAS,AtomicInteger

现在讨论使用 synchronized 来进行解决,即俗称的对象锁,它采用互斥的方式让同一时刻至多只有一个线程持有对象锁,其他线程如果想获取这个锁就会阻塞住,这样就能保证拥有锁的线程可以安全的执行临界区内的代码,不用担心线程上下文切换

注意 虽然 java 中互斥和同步都可以采用 synchronized 关键字来完成,但它们还是有区别的:

  • 互斥是保证临界区的竞态条件发生,同一时刻只能有一个线程执行临界区的代码
  • 同步是由于线程执行的先后,顺序不同但是需要一个线程等待其它线程运行到某个点。

synchronized

语法

1
2
3
4
synchronized(对象) // 线程1获得锁, 那么线程2的状态是(blocked)
{
临界区
}

上面的实例程序使用synchronized后如下,计算出的结果为0!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
static int counter = 0;
static final Object lock = new Object();
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
synchronized (lock) {
counter++;
}
}
}, "t1");
Thread t2 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
synchronized (lock) {
counter--;
}
}
}, "t2");
t1.start();
t2.start();
t1.join();
t2.join();
log.debug("{}",counter);
}

synchronized的理解

img

类比:

  • synchronized(对象) 中的对象,可以想象为一个房间(room),有唯一入口(门)房间只能一次进入一人进行计算,线程 t1,t2 想象成两个人
  • 当线程 t1 执行到 synchronized(room) 时就好比 t1 进入了这个房间,并锁住了门拿走了钥匙,在门内执行count++ 代码
  • 这时候如果 t2 也运行到了 synchronized(room) 时,它发现门被锁住了,只能在门外等待,发生了上下文切换,阻塞住了
  • 这中间即使 t1 的 cpu 时间片不幸用完,被踢出了门外(不要错误理解为锁住了对象就能一直执行下去哦),这时门还是锁住的,t1 仍拿着钥匙,t2 线程还在阻塞状态进不来,只有下次轮到 t1 自己再次获得时间片时才能开门进入
  • 当 t1 执行完 synchronized{} 块内的代码,这时候才会从 obj 房间出来并解开门上的锁,唤醒 t2 线程把钥匙给他。t2 线程这时才可以进入 obj 房间,锁住了门拿上钥匙,执行它的 count-- 代码.

synchronized 实际上利用对象保证了临界区代码的原子性,临界区内的代码在外界看来是不可分割的,不会被线程切换所打断

1583571633729

思考

synchronized 实际是用对象锁保证了临界区内代码的原子性,临界区内的代码对外是不可分割的,不会被线程切换所打断。

为了加深理解,请思考下面的问题

  • 如果把 synchronized(obj) 放在 for 循环的外面,如何理解?– 原子性
  • 如果 t1 synchronized(obj1) 而 t2 synchronized(obj2) 会怎样运作?– 锁对象统一
  • 如果 t1 synchronized(obj) 而 t2 没有加会怎么样?如何理解?– 锁对象要锁都锁

面向对象改进

把需要保护的共享变量放入一个类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

class Room {
private int value = 0;
public void increment() {
synchronized (this) {
value++;
}
}
public void decrement() {
synchronized (this) {
value--;
}
}
public int get() {
synchronized (this) {
return value;
}
}
}

@Slf4j
public class Test {

public static void main(String[] args) throws InterruptedException {
Room room = new Room();
Thread t1 = new Thread(() -> {
for (int j = 0; j < 5000; j++) {
room.increment();
}
}, "t1");

Thread t2 = new Thread(() -> {
for (int j = 0; j < 5000; j++) {
room.decrement();
}
}, "t2");

t1.start();
t2.start();
t1.join();
t2.join();

log.debug("count: {}" , room.get());
}
}

方法上的 synchronized

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
    class Test{
public synchronized void test() {

}
}
//等价于,锁住的是this对象
class Test{
public void test() {
synchronized(this) {

}
}
}
//------------------------------------------------------------------------------------------------
class Test{
public synchronized static void test() {
}
}
// 等价于,锁住的是类对象
class Test{
public static void test() {
synchronized(Test.class) {

}
}
}

所谓的“线程八锁”

其实就是考察 synchronized 锁住的是哪个对象

  • 情况1:12 或 21,都是n1的锁

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    @Slf4j(topic = "c.Number")
    class Number{
    public synchronized void a() {
    log.debug("1");
    }
    public synchronized void b() {
    log.debug("2");
    }
    }

    public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
    }
  • 情况2:1s后12,或 2 1s后 1,都是n1的锁

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    @Slf4j(topic = "c.Number")
    class Number{
    public synchronized void a() {
    sleep(1);
    log.debug("1");
    }
    public synchronized void b() {
    log.debug("2");
    }
    }

    public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
    }
  • 情况3:3 1s 12 或 23 1s 1 或 32 1s 1,,都是n1的锁

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    @Slf4j(topic = "c.Number")
    class Number{
    public synchronized void a() {
    sleep(1);
    log.debug("1");
    }
    public synchronized void b() {
    log.debug("2");
    }
    public void c() {
    log.debug("3");
    }
    }

    public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
    new Thread(()->{ n1.c(); }).start();
    }
  • 情况4:2 1s 后 1,方法a为n1的锁,方法b为n2的锁

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    @Slf4j(topic = "c.Number")
    class Number{
    public synchronized void a() {
    sleep(1);
    log.debug("1");
    }
    public synchronized void b() {
    log.debug("2");
    }
    }

    public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n2.b(); }).start();
    }
  • 情况5:2 1s 后 1,静态方法a为类对象的锁,方法b为n1的锁

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    @Slf4j(topic = "c.Number")
    class Number{
    public static synchronized void a() {
    sleep(1);
    log.debug("1");
    }
    public synchronized void b() {
    log.debug("2");
    }
    }

    public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
    }
  • 情况6:1s 后12, 或 2 1s后 1,锁的都是类对象

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    @Slf4j(topic = "c.Number")
    class Number{
    public static synchronized void a() {
    sleep(1);
    log.debug("1");
    }
    public static synchronized void b() {
    log.debug("2");
    }
    }

    public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
    }
  • 情况7:2 1s 后 1,静态方法a为类对象的锁,方法b为n2的锁

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    @Slf4j(topic = "c.Number")
    class Number{
    public static synchronized void a() {
    sleep(1);
    log.debug("1");
    }
    public synchronized void b() {
    log.debug("2");
    }
    }

    public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n2.b(); }).start();
    }
  • 情况8:1s 后12, 或 2 1s后 1,锁的是类对象,所以n1和n2锁的是同一个对象

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    @Slf4j(topic = "c.Number")
    class Number{
    public static synchronized void a() {
    sleep(1);
    log.debug("1");
    }
    public static synchronized void b() {
    log.debug("2");
    }
    }

    public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n2.b(); }).start();
    }

变量的线程安全分析

成员变量和静态变量的线程安全分析

  • 如果没有在线程间共享,那么变量是安全的
  • 如果变量在线程间共享
    • 如果只有读操作,则线程安全
    • 如果有读写操作,则这段代码是临界区,需要考虑线程安全

局部变量线程安全分析

  • 局部变量【局部变量被初始化为基本数据类型】是安全的
  • 局部变量引用的对象未必是安全的
    • 如果局部变量引用的对象没有引用线程共享的对象,那么是线程安全的
    • 如果局部变量引用的对象引用了一个线程共享的对象,那么要考虑线程安全的

线程安全的情况

局部变量【局部变量被初始化为基本数据类型】是安全的,示例如下

1
2
3
4
public static void test() {
int i = 10;
i++;
}

每个线程调用 test() 方法时局部变量 i,会在每个线程的栈帧内存中被创建多份,因此不存在共享

1583587166210

线程不安全的情况

如果局部变量引用的对象逃离方法的范围,那么要考虑线程安全的,代码示例如下 Test15.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class Test {
public static void main(String[] args) {
UnsafeTest unsafeTest = new UnsafeTest();
for (int i =0;i<100;i++){
new Thread(()->{
unsafeTest.method1();
},"线程"+i).start();
}
}
}

class UnsafeTest{
ArrayList<String> arrayList = new ArrayList<>();
public void method1(){
for (int i = 0; i < 100; i++) {
//临界区,会产生竞态条件
method2();
method3();
}
}
private void method2() {
arrayList.add("1");
}
private void method3() {
arrayList.remove(0);
}
}

不安全原因分析

无论哪个线程中的 method2 和 method3 引用的都是同一个对象中的 list 成员变量:一个 ArrayList ,在添加一个元素的时候,它可能会有两步来完成:

  1. 第一步,在 arrayList[Size] 的位置存放此元素; 第二步增大 Size 的值。
  2. 在单线程运行的情况下,如果 Size = 0,添加一个元素后,此元素在位置 0,而且 Size=1;而如果是在多线程情下,比如有两个线程,线程 A 先将元素存放在位置 0。但是此时 CPU 调线程 A 暂停,线程 B 得到运行的机会。线程 B 也向此 ArrayList 添加元素,因为此时 Size 仍等于 0 (注意哦,我们假设的是添加一个元素是要两个步骤哦,而线程A仅仅完成了步骤1),所以线程 B 也将元素存放在位置 0。然后线程 A 和线程 B 都继续运行,都增加 Size 的值。 那好,现在我们来看看 ArrayList 的情况,元素实际上只有一个,存放在位置 0,而 Size 却等于 2。这就是“线程不 安全”了。

1583589268096

1583587571334

解决方法

可以将list修改成局部变量,那么就不会有上述问题了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class safeTest{
public void method1(){
ArrayList<String> arrayList = new ArrayList<>();
for (int i = 0; i < 100; i++) {
method2(arrayList);
method3(arrayList);
}
}
private void method2(ArrayList arrayList) {
arrayList.add("1");
}
private void method3(ArrayList arrayList) {
arrayList.remove(0);
}
}
  • list 是局部变量,每个线程调用时会创建其不同实例,没有共享
  • 而 method2 的参数是从 method1 中传递过来的,与 method1 中引用同一个对象
  • method3 的参数分析与 method2 相同

思考 private 或 final 的重要性

方法访问修饰符带来的思考,如果把 method2 和 method3 的方法修改为 public 会不会导致线程安全问题?

情况1:有其它线程调用 method2 和 method3,不会引起线程安全问题

情况2:在情况1 的基础上,为 ThreadSafe 类添加子类,子类覆盖 method2 或 method3 方法,会引起线程安全问题,即如下所示: 从这个例子可以看出 private 或 final 提供【安全】的意义所在,请体会开闭原则中的【闭】

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class ThreadSafe {
public final void method1(int loopNumber) {
ArrayList<String> list = new ArrayList<>();
for (int i = 0; i < loopNumber; i++) {
method2(list);
method3(list);
}
}
private void method2(ArrayList<String> list) {
list.add("1");
}
private void method3(ArrayList<String> list) {
list.remove(0);
}
}
class ThreadSafeSubClass extends ThreadSafe{
@Override
public void method3(ArrayList<String> list) {
new Thread(() -> {
list.remove(0);
}).start();
}
}

常见线程安全类

  1. String
  2. Integer
  3. StringBuffer
  4. Random
  5. Vector
  6. Hashtable
  7. java.util.concurrent 包下的类

这里说它们是线程安全的是指,多个线程调用它们同一个实例的某个方法时,是线程安全的。也可以理解为它们的每个方法是原子的

1
2
3
4
5
6
7
Hashtable table = new Hashtable();
new Thread(()->{
table.put("key", "value1");
}).start();
new Thread(()->{
table.put("key", "value2");
}).start();

线程安全类方法的组合

但注意它们多个方法的组合不是原子的,见下面分析

1
2
3
4
5
Hashtable table = new Hashtable();
// 线程1,线程2
if( table.get("key") == null) {
table.put("key", value);
}
1
2
3
4
5
6
7
8
sequenceDiagram
participant t1 as 线程1
participant t2 as 线程2
participant table
t1->>table:get("key")==null
t2->>table:get("key")==null
t2->>table:put("key",v2)
t1->>table:put("key",v1)

image-20220815151540405

不可变类的线程安全

StringInteger类都是不可变的类,因为其类内部状态是不可改变的,因此它们的方法都是线程安全的,有同学或许有疑问,Stringreplacesubstring 等方法【可以】改变值啊,其实调用这些方法返回的已经是一个新创建的对象了!

1
2
3
4
5
6
7
8
9
10
11
12
public class Immutable{
private int value = 0;
public Immutable(int value){
this.value = value;
}
public int getValue(){
return this.value;
}
public Immutable add(int v){
return new Immutable(this.value + v);
}
}

实例分析-是否线程安全

例一

分析线程是否安全,先对类的成员变量,类变量,局部变量进行考虑,如果变量会在各个线程之间共享,那么就得考虑线程安全问题了,如果变量A引用的是线程安全类的实例,并且只调用该线程安全类的一个方法,那么该变量A是线程安全的的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class MyServlet extends HttpServlet {
// 是否安全? 不安全
Map<String,Object> map = new HashMap<>();
// 是否安全? 安全
String S1 = "...";
// 是否安全? 安全
final String S2 = "...";
// 是否安全? 不安全
Date D1 = new Date();
// 是否安全? 不安全
final Date D2 = new Date();

public void doGet(HttpServletRequest request, HttpServletResponse response) {
// 使用上述变量
}
}

例二

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class MyServlet extends HttpServlet {
// 是否安全? 不安全
private UserService userService = new UserServiceImpl();

public void doGet(HttpServletRequest request, HttpServletResponse response) {
userService.update(...);
}
}

public class UserServiceImpl implements UserService {
// 记录调用次数
private int count = 0;

public void update() {
// ...
count++;
}
}

例三

此类不是线程安全的,MyAspect切面类只有一个实例,成员变量start 会被多个线程同时进行读写操作,环绕通知来解决

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@Aspect
@Component
public class MyAspect {
// 是否安全?
private long start = 0L;

@Before("execution(* *(..))")
public void before() {
start = System.nanoTime();
}

@After("execution(* *(..))")
public void after() {
long end = System.nanoTime();
System.out.println("cost time:" + (end-start));
}
}

例四

此例是典型的三层模型调用,MyServlet UserServiceImpl UserDaoImpl类都只有一个实例,UserDaoImpl类中没有成员变量,update方法里的变量引用的对象不是线程共享的,所以是线程安全的;UserServiceImpl类中只有一个线程安全的UserDaoImpl类的实例,那么UserServiceImpl类也是线程安全的,同理 MyServlet也是线程安全的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class MyServlet extends HttpServlet {
// 是否安全 安全
private UserService userService = new UserServiceImpl();

public void doGet(HttpServletRequest request, HttpServletResponse response) {
userService.update(...);
}
}
public class UserServiceImpl implements UserService {
// 是否安全 安全
private UserDao userDao = new UserDaoImpl();
public void update() {
userDao.update();
}
}
public class UserDaoImpl implements UserDao {
public void update() {
String sql = "update user set password = ? where username = ?";
// 是否安全 安全
try (Connection conn = DriverManager.getConnection("","","")){
// ...
} catch (Exception e) {
// ...
}
}
}

例五

跟示例二大体相似,UserDaoImpl类中有成员变量,那么多个线程可以对成员变量conn 同时进行操作,故是不安全的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class MyServlet extends HttpServlet {
// 是否安全
private UserService userService = new UserServiceImpl();

public void doGet(HttpServletRequest request, HttpServletResponse response) {
userService.update(...);
}
}
public class UserServiceImpl implements UserService {
// 是否安全
private UserDao userDao = new UserDaoImpl();
public void update() {
userDao.update();
}
}
public class UserDaoImpl implements UserDao {
// 是否安全 不安全
private Connection conn = null;
public void update() throws SQLException {
String sql = "update user set password = ? where username = ?";
conn = DriverManager.getConnection("","","");
// ...
conn.close();
}
}

例六

跟示例三大体相似,UserServiceImpl类的update方法中 UserDao是作为局部变量存在的,所以每个线程访问的时候都会新建有一个UserDao对象,新建的对象是线程独有的,所以是线程安全的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class MyServlet extends HttpServlet {
// 是否安全
private UserService userService = new UserServiceImpl();
public void doGet(HttpServletRequest request, HttpServletResponse response) {
userService.update(...);
}
}
public class UserServiceImpl implements UserService {
public void update() {
UserDao userDao = new UserDaoImpl();
userDao.update();
}
}
public class UserDaoImpl implements UserDao {
// 是否安全 安全
private Connection = null;
public void update() throws SQLException {
String sql = "update user set password = ? where username = ?";
conn = DriverManager.getConnection("","","");
// ...
conn.close();
}
}

例七

1
2
3
4
5
6
7
8
9
10
11
public abstract class Test {
public void bar() {
// 是否安全
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
foo(sdf);
}
public abstract foo(SimpleDateFormat sdf);
public static void main(String[] args) {
new Test().bar();
}
}

其中 foo 的行为是不确定的,可能导致不安全的发生,被称之为外星方法,因为foo方法可以被重写,导致线程不安全。

在String类中就考虑到了这一点,String类是finally的,子类不能重写它的方法。

1
2
3
4
5
6
7
8
9
10
11
12
public void foo(SimpleDateFormat sdf) {
String dateStr = "1999-10-11 00:00:00";
for (int i = 0; i < 20; i++) {
new Thread(() -> {
try {
sdf.parse(dateStr);
} catch (ParseException e) {
e.printStackTrace();
}
}).start();
}
}

习题

卖票练习

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
public class ExerciseSell {
public static void main(String[] args) {
TicketWindow ticketWindow = new TicketWindow(2000);
List<Thread> list = new ArrayList<>();
// 用来存储买出去多少张票
List<Integer> sellCount = new Vector<>();
for (int i = 0; i < 2000; i++) {
Thread t = new Thread(() -> {
// 分析这里的竞态条件
int count = ticketWindow.sell(randomAmount());
try{
Thread.sleep(randomAmount());
} catch (InterruptedException e){
e.printStackTrace();
}
sellCount.add(count);
});
list.add(t);
t.start();
}
list.forEach((t) -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
// 卖出去的票求和
log.debug("selled count:{}",sellCount.stream().mapToInt(c -> c).sum());
// 剩余票数
log.debug("remainder count:{}", ticketWindow.getCount());
}
// Random 为线程安全
static Random random = new Random();
// 随机 1~5
public static int randomAmount() {
return random.nextInt(5) + 1;
}
}

class TicketWindow {
private int count;
public TicketWindow(int count) {
this.count = count;
}
public int getCount() {
return count;
}
public int sell(int amount) {
//临界区,不安全
if (this.count >= amount) {
this.count -= amount;
return amount;
} else {
return 0;
}
}
}

测试脚本

1
for /L %n in (1,1,10) do java -cp ".;C:\Users\manyh\.m2\repository\ch\qos\logback\logback-classic\1.2.3\logback-classic-1.2.3.jar;C:\Users\manyh\.m2\repository\ch\qos\logback\logback-core\1.2.3\logback-core-1.2.3.jar;C:\Users\manyh\.m2\repository\org\slf4j\slf4j-api\1.7.25\slf4j-api-1.7.25.jar" cn.itcast.n4.exercise.ExerciseSell

不安全,解决:使用synchronized关键字修饰方法

1
2
3
4
5
6
7
8
9
public synchronized int sell(int amount) {
//临界区,不安全
if (this.count >= amount) {
this.count -= amount;
return amount;
} else {
return 0;
}
}

另外,用下面的代码行不行,为什么?

1
List<Integer> sellCount = new ArrayList<>();

不行,ArrayList不安全

转账练习

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
public class ExerciseTransfer {
public static void main(String[] args) throws InterruptedException {
Account a = new Account(1000);
Account b = new Account(1000);
Thread t1 = new Thread(() -> {
for (int i = 0; i < 1000; i++) {
a.transfer(b, randomAmount());
}
}, "t1");
Thread t2 = new Thread(() -> {
for (int i = 0; i < 1000; i++) {
b.transfer(a, randomAmount());
}
}, "t2");
t1.start();
t2.start();
t1.join();
t2.join();
// 查看转账2000次后的总金额
log.debug("total:{}",(a.getMoney() + b.getMoney()));
}
// Random 为线程安全
static Random random = new Random();
// 随机 1~100
public static int randomAmount() {
return random.nextInt(100) +1;
}
}

//账户
class Account {
private int money;
public Account(int money) {
this.money = money;
}
public int getMoney() {
return money;
}
public void setMoney(int money) {
this.money = money;
}
//转账
public void transfer(Account target, int amount) {
//临界区,不安全
if (this.money > amount) {
this.setMoney(this.getMoney() - amount);
target.setMoney(target.getMoney() + amount);
}
}
}

这样改正行不行,为什么? 不行,锁要用同一个共用锁,而这里的account是不同对象

1
2
3
4
5
6
public synchronized void transfer(Account target, int amount) {
if (this.money > amount) {
this.setMoney(this.getMoney() - amount);
target.setMoney(target.getMoney() + amount);
}
}

怎样解决?synchronized 关键字锁住类对象

1
2
3
4
5
6
7
8
public void transfer(Account target, int amount) {
synchronized(Account.class){
if (this.money > amount) {
this.setMoney(this.getMoney() - amount);
target.setMoney(target.getMoney() + amount);
}
}
}

Monitor

Java 对象头

以 32 位虚拟机为例

普通对象的对象头结构如下,其中,Mark Word 主要用来存储对象自身的运行时数据;Klass Word 为指针,指向对应的 Class 对象。

image.png

数组对象:相对于普通对象多了记录数组长度

image.png

Mark Word 结构

不同对象状态下结构和含义也不同

image.png

64 位虚拟机 Mark Word

image.png

所以一个对象的结构如下:

1583678624634

原理之 Monitor (锁)

Monitor 被翻译为监视器或者说管程

每个 java 对象都可以关联一个 Monitor 对象,如果使用 synchronized 给对象上锁(重量级)之后,该对象头的 Mark Word 中就被设置为指向 Monitor 对象的指针。

Monitor 结构

1583652360228

  • 刚开始时 Monitor 中的 Owner为 null
  • 当 Thread-2 执行 synchronized(obj){} 代码时就会将 Monitor 的所有者 Owner 设置为 Thread-2,上锁成功,Monitor 中同一时刻只能有一个Owner
  • 当 Thread-2 占据锁时,如果线程 Thread-3,Thread-4 也来执行 synchronized(obj){} 代码,就会进入EntryList中变成 BLOCKED 状态
  • Thread-2 执行完同步代码块的内容,然后唤醒 EntryList 中等待的线程来竞争锁,竞争时是非公平
  • 图中 WaitSet 中的 Thread-0,Thread-1 是之前获得过锁,但条件不满足进入 WAITING 状态的线程,后面讲 wait-notify 时会分析

注意:

  • synchronized 必须是进入同一个对象的 monitor 才有上述的效果
  • 不加 synchronized 的对象不会关联监视器,不遵从以上规则

原理之 synchronized (字节码)

代码如下

1
2
3
4
5
6
7
static final Object lock=new Object();
static int counter = 0;
public static void main(String[] args) {
synchronized (lock) {
counter++;
}
}

反编译后的部分字节码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public static void main(java.lang.String[]);
descriptor: ([Ljava/lang/String;)V
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=2, locals=3, args_size=1
0: getstatic #2 // 取得lock的引用(synchronized开始了)
3: dup // 复制操作数栈栈顶的值放入栈顶,即复制了一份lock的引用
4: astore_1 // lock引用 -> slot 1,操作数栈栈顶的值弹出,即将lock的引用存到局部变量表中
5: monitorenter // 将lock对象的 Mark Word 置为指向Monitor指针
6: getstatic #3 // <- i
9: iconst_1 // 准备常数 1
10: iadd // +1
11: putstatic #3 // -> i
14: aload_1 // <- lock引用
15: monitorexit // 将lock对象的 Mark Word 重置,唤醒EntryList
16: goto 24 // 下面是异常处理指令,可以看到,如果出现异常,也能自动地释放锁
19: astore_2 // e -> slot 2
20: aload_1 // <- lock引用
21: monitorexit // 将 lock 对象 MarkWord 重置,唤醒 EntryList
22: aload_2 // <- slot 2(e)
23: athrow // throw e
24: return

Exception table:
from to target type
12: invokespecial #1 // Method java/lang/Object."<init>":()V
15: putstatic #2 // Field lock:Ljava/lang/Object;
18: iconst_0
19: putstatic #3 // Field counter:I
22: return
LineNumberTable:
line 5: 0
line 7: 8
line 8: 18

注意:方法级别的 synchronized 不会在字节码指令中有所体现

原理之 synchronized 进阶 (锁升级)

(不涉及 Monitor 的)轻量级锁

  • 轻量级锁的使用场景是:如果一个对象虽然有多个线程要对它进行加锁,但是加锁的时间是错开的(也就是没有人可以竞争的),那么可以使用轻量级锁来进行优化。
  • 轻量级锁对使用者是透明的,即语法仍然是synchronized

假设有两个方法同步块,利用同一个对象加锁

1
2
3
4
5
6
7
8
9
10
11
12
static final Object obj = new Object();
public static void method1() {
synchronized( obj ) {
// 同步块 A
method2();
}
}
public static void method2() {
synchronized( obj ) {
// 同步块 B
}
}
  • 每次指向到 synchronized 代码块时,都会创建锁记录(Lock Record)对象,每个线程都会包括一个锁记录的结构,锁记录内部可以储存对象的 Mark Word 和对象引用 reference

1583755737580

  • 让锁记录中的 Object reference 指向对象,并且尝试用 cas(compare and sweep) 替换 Object 对象的 Mark Word ,将 Mark Word 的值存入锁记录中

1583755888236

  • 如果 cas 替换成功,那么对象的对象头储存的就是锁记录的地址和状态00,表示由该线程给对象加锁,如下所示

1583755964276

  • 如果 cas 失败,有两种情况
    • 如果是其它线程已经持有了该 Object 的轻量级锁,那么表示有竞争,将进入锁膨胀阶段
    • 如果是自己的线程已经执行了 synchronized 进行加锁,那么再添加一条 Lock Record 作为重入的计数

1583756190177

  • 当线程退出 synchronized 代码块的时候,如果获取的是取值为 null 的锁记录 ,表示有重入,这时重置锁记录,表示重入计数减一

1583756357835

  • 当线程退出 synchronized 代码块的时候,如果获取的锁记录取值不为 null,那么使用 cas 将 Mark Word 的值恢复给对象
    • 成功,则解锁成功
    • 失败,则说明轻量级锁进行了锁膨胀或已经升级为重量级锁,进入重量级锁解锁流程

(轻量级)锁膨胀(为重量级锁)

如果在尝试加轻量级锁的过程中,cas 操作无法成功,这是有一种情况就是其它线程已经为这个对象加上了轻量级锁,这是就要进行锁膨胀,将轻量级锁变成重量级锁。

  • 当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁

1583757433691

  • 这时 Thread-1 加轻量级锁失败,进入锁膨胀流程
    • 即为对象申请 Monitor 锁,让 Object 指向重量级锁地址
    • 然后自己进入Monitor 的 EntryList 变成 BLOCKED 状态

1583757586447

  • 当Thread-0 退出 synchronized 同步块时,使用 cas 将 Mark Word 的值恢复给对象头,失败,那么会进入重量级锁的解锁过程,即按照 Monitor 的地址找到 Monitor 对象,将 Owner 设置为 null,唤醒 EntryList 中的 Thread-1 线程

(竞争重量级锁时的)自旋优化

重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即在自旋的时候持锁的线程释放了锁),那么当前线程就可以避免阻塞

  • 自旋重试成功的情况

1583758113724

  • 自旋重试失败的情况,自旋了一定次数还是没有等到持锁的线程释放锁

1583758136650

  • 自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。
  • 在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
  • Java 7 之后不能控制是否开启自旋功能

(比轻量级锁更轻的)偏向锁

  • 轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作。
  • Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有

这里的线程 id 是操作系统赋予的 id 和 Thread 的 id 是不同的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
static final Object obj = new Object();

public static void m1() {
synchronized( obj ) {
// 同步块 A
m2();
}
}

public static void m2() {
synchronized( obj ) {
// 同步块 B
m3();
}
}

public static void m3() {
synchronized( obj ) {
// 同步块 C
}
}

image-20220815123841079

image.png

偏向状态

1583762169169

一个对象的创建过程

  • 如果开启了偏向锁(默认是开启的),那么对象刚创建之后,Mark Word 值为 0x05,即最后三位的值101,并且这时它的 Thread,epoch,age都是0
  • 偏向锁默认是延迟的,不会在程序启动的时候立刻生效,如果想避免延迟,可以添加虚拟机参数来禁用延迟:-XX:BiasedLockingStartupDelay=0禁用延迟
  • 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、age 都为 0,第一次用到 hashcode 时才会赋值
  • 注意:处于偏向锁的对象解锁后,线程 id 仍存储于对象头中
测试延迟特性

偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数 -XX:BiasedLockingStartupDelay=0禁用延迟

1
2
3
4
5
6
7
8
public static void main(String[] args) throws InterruptedException {
Test1 t = new Test1();
test.parseObjectHeader(getObjectHeader(t));
synchronized (t){
test.parseObjectHeader(getObjectHeader(t));
}
test.parseObjectHeader(getObjectHeader(t));
}

输出结果如下,三次输出的状态码都为101

1
2
3
4
5
6
biasedLockFlag (1bit): 1
LockFlag (2bit): 01
biasedLockFlag (1bit): 1
LockFlag (2bit): 01
biasedLockFlag (1bit): 1
LockFlag (2bit): 01
测试偏向锁
1
class Dog {}

利用 jol 第三方工具来查看对象头信息(注意这里up主扩展了 jol 让它输出更为简洁)

这里视频里引入的依赖貌似是他自己做的jar包,代码我就没写了,代码很简单,重在理解对象头MarkWord

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public static void main(String[] args) throws IOException {
Dog d = new Dog();
ClassLayout classLayout = ClassLayout.parseInstance(d);

new Thread(() -> {
log.debug("synchronized 前");
System.out.println(classLayout.toPrintableSimple(true));
synchronized (d) {
log.debug("synchronized 中");
System.out.println(classLayout.toPrintableSimple(true));
}
log.debug("synchronized 后");
System.out.println(classLayout.toPrintableSimple(true));
}, "t1").start();
}

输出

1
2
3
4
5
6
11:08:58.117 c.TestBiased [t1] - synchronized
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101
11:08:58.121 c.TestBiased [t1] - synchronized
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101
11:08:58.121 c.TestBiased [t1] - synchronized
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101

注意

处于偏向锁的对象解锁后,线程 id 仍存储于对象头中,也就是偏(心)向某个线程了

测试禁用

如果没有开启偏向锁,那么对象创建后最后三位的值为001,这时候它的hashcode,age都为0,hashcode是第一次用到hashcode时才赋值的。在上面测试代码运行时在添加 VM 参数-XX:-UseBiasedLocking禁用偏向锁(禁用偏向锁则优先使用轻量级锁),退出synchronized状态变回001

  1. 虚拟机参数-XX:-UseBiasedLocking

  2. 输出结果如下,最开始状态为001,然后加轻量级锁变成00,最后恢复成001

    1
    2
    3
    4
    5
    biasedLockFlag (1bit): 0
    LockFlag (2bit): 01
    LockFlag (2bit): 00
    biasedLockFlag (1bit): 0
    LockFlag (2bit): 01

撤销偏向锁-hashcode方法

测试 hashCode:当调用对象的 hashcode 方法的时候就会撤销这个对象的偏向锁,因为使用偏向锁时没有位置存hashcode的值了

  1. 测试代码如下,使用虚拟机参数 -XX:BiasedLockingStartupDelay=0,确保我们的程序最开始使用了偏向锁!但是结果显示程序还是使用了轻量级锁。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    public static void main(String[] args) throws InterruptedException {
    Test1 t = new Test1();
    t.hashCode();
    test.parseObjectHeader(getObjectHeader(t));

    synchronized (t){
    test.parseObjectHeader(getObjectHeader(t));
    }
    test.parseObjectHeader(getObjectHeader(t));
    }
  2. 输出结果

    1
    2
    3
    4
    5
    biasedLockFlag (1bit): 0
    LockFlag (2bit): 01
    LockFlag (2bit): 00
    biasedLockFlag (1bit): 0
    LockFlag (2bit): 01
测试 hashCode

Dog d = new Dog();后加上一句 d.hashCode();

  • 正常状态对象一开始是没有 hashCode 的,第一次调用才生成
  • 调用了 hashCode() 后会撤销该对象的偏向锁

撤销(偏向) - 调用对象 hashCode

调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被撤销

  • 轻量级锁会在锁记录中记录 hashCode
  • 重量级锁会在 Monitor 中记录 hashCode

记得去掉 -XX:-UseBiasedLocking

在调用 hashCode 后使用偏向锁,

输出

1
2
3
4
5
6
7
11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015 
11:22:10.391 c.TestBiased [t1] - synchronized
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001
11:22:10.393 c.TestBiased [t1] - synchronized
00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000
11:22:10.393 c.TestBiased [t1] - synchronized
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001

撤销偏向锁-其它线程使用对象

这里我们演示的是偏向锁撤销变成轻量级锁的过程,那么就得满足轻量级锁的使用条件,就是没有线程对同一个对象进行锁竞争,我们使用waitnotify 来辅助实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

private static void test2() throws InterruptedException {

Dog d = new Dog();

Thread t1 = new Thread(() -> {

log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));

synchronized (TestBiased.class) {
TestBiased.class.notify();
}
// 如果不用 wait/notify 使用 join 必须打开下面的注释
// 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的
/*try {
System.in.read();
} catch (IOException e) {
e.printStackTrace();
}*/
}, "t1");
t1.start();

Thread t2 = new Thread(() -> {
synchronized (TestBiased.class) {
try {
TestBiased.class.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));

}, "t2");
t2.start();
}
  1. 虚拟机参数-XX:BiasedLockingStartupDelay=0确保我们的程序最开始使用了偏向锁!

  2. 输出结果,最开始使用的是偏向锁,但是第二个线程尝试获取对象锁时,发现本来对象偏向的是线程一,那么偏向锁就会失效,加的就是轻量级锁

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    biasedLockFlag (1bit): 1
    LockFlag (2bit): 01
    biasedLockFlag (1bit): 1
    LockFlag (2bit): 01
    biasedLockFlag (1bit): 1
    LockFlag (2bit): 01
    biasedLockFlag (1bit): 1
    LockFlag (2bit): 01
    LockFlag (2bit): 00
    biasedLockFlag (1bit): 0
    LockFlag (2bit): 01

撤销 - 调用 wait/notify

会使对象的锁变成重量级锁,因为 wait/notify 方法只有重量级锁才支持

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

public static void main(String[] args) throws InterruptedException {
Dog d = new Dog();

Thread t1 = new Thread(() -> {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
try {
d.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}, "t1");
t1.start();

new Thread(() -> {
try {
Thread.sleep(6000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (d) {
log.debug("notify");
d.notify();
}
}, "t2").start();
}

输出

1
2
3
4
[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
[t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101
[t2] - notify
[t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010

批量重偏向

如果对象被多个线程访问,但是没有竞争,这时候偏向了线程一的对象又有机会重新偏向线程二,即可以不用升级为轻量级锁,重偏向会重置对象的 Thread ID。

当撤销偏向锁阈值超过 20 对象次,会给这些对象加锁时重新偏向至加锁线程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
private static void test3() throws InterruptedException {

Vector<Dog> list = new Vector<>();

Thread t1 = new Thread(() -> {
for (int i = 0; i < 30; i++) {
Dog d = new Dog();
list.add(d);
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}
synchronized (list) {
list.notify();
}
}, "t1");
t1.start();

Thread t2 = new Thread(() -> {
synchronized (list) {
try {
list.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("===============> ");
for (int i = 0; i < 30; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}, "t2");
t2.start();
}

输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
[t1] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - ===============>
[t2] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 0 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 1 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 2 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 3 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 4 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 5 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 6 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 7 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 8 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 9 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 10 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 11 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 12 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 13 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 13 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 14 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 15 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 16 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 17 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 17 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 18 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101

批量撤销(偏向)

当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象都会变为不可偏向的,新建的该类型对象也是不可偏向的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
static Thread t1,t2,t3;
private static void test4() throws InterruptedException {
Vector<Dog> list = new Vector<>();

int loopNumber = 39;
t1 = new Thread(() -> {
for (int i = 0; i < loopNumber; i++) {
Dog d = new Dog();
list.add(d);
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}
LockSupport.unpark(t2);
}, "t1");
t1.start();

t2 = new Thread(() -> {
LockSupport.park();
log.debug("===============> ");
for (int i = 0; i < loopNumber; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
LockSupport.unpark(t3);
}, "t2");
t2.start();

t3 = new Thread(() -> {
LockSupport.park();
log.debug("===============> ");
for (int i = 0; i < loopNumber; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}, "t3");
t3.start();

t3.join();
log.debug(ClassLayout.parseInstance(new Dog()).toPrintableSimple(true));
}

锁消除

锁消除 JIT即时编译器会对字节码做进一步优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations=3)
@Measurement(iterations=5)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class MyBenchmark {
static int x = 0;
@Benchmark
public void a() throws Exception {
x++;
}
@Benchmark
public void b() throws Exception {
//这里的o是局部变量,不会被共享,JIT做热点代码优化时会做锁消除
Object o = new Object();
synchronized (o) {
x++;
}
}
}

java -jar benchmarks.jar

发现两部分的差别并不大,甚至b加了锁比a没加锁还快

img

java -XX:-EliminateLocks -jar benchmarks.jar

使用 -XX:-EliminateLocks禁用锁消除后就会发现 b性能比a差劲多了

img

对相同对象多次加锁,导致线程发生多次重入,可以使用锁粗化方式来优化,这不同于之前讲的细分锁的粒度。

wait/notify

原理之 wait / notify

img

  • Owner 线程发现条件不满足,调用 wait 方法,即可进入 WaitSet 变为 WAITING 状态
  • BLOCKED 和 WAITING 的线程都处于阻塞状态,不占用 CPU 时间片
  • BLOCKED 线程会在 Owner 线程释放锁时唤醒
  • WAITING 线程会在 Owner 线程调用 notify 或 notifyAll 时唤醒,但唤醒后并不意味者立刻获得锁,仍需进入EntryList 重新竞争

API 介绍

  • obj.wait() 让进入 object 监视器的线程到 waitSet 等待
  • obj.notify() 在 object 上正在 waitSet 等待的线程中挑一个唤醒
  • obj.notifyAll() 让 object 上正在 waitSet 等待的线程全部唤醒

它们都是线程之间进行协作的手段,都属于 Object 对象的方法。必须获得此对象的锁,才能调用这几个方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
final static Object obj = new Object();

public static void main(String[] args) {
new Thread(() -> {
synchronized (obj) {
log.debug("执行....");
try {
obj.wait(); // 让线程在obj上一直等待下去
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug("其它代码....");
}
}).start();

new Thread(() -> {
synchronized (obj) {
log.debug("执行....");
try {
obj.wait(); // 让线程在obj上一直等待下去
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug("其它代码....");
}
}).start();

// 主线程两秒后执行
sleep(2);
log.debug("唤醒 obj 上其它线程");
synchronized (obj) {
obj.notify(); // 唤醒obj上一个线程
// obj.notifyAll(); // 唤醒obj上所有等待线程
}
}

notify 的一种结果

1
2
3
4
20:00:53.096 [Thread-0] c.TestWaitNotify - 执行.... 
20:00:53.099 [Thread-1] c.TestWaitNotify - 执行....
20:00:55.096 [main] c.TestWaitNotify - 唤醒 obj 上其它线程
20:00:55.096 [Thread-0] c.TestWaitNotify - 其它代码....

notifyAll 的结果

1
2
3
4
5
19:58:15.457 [Thread-0] c.TestWaitNotify - 执行.... 
19:58:15.460 [Thread-1] c.TestWaitNotify - 执行....
19:58:17.456 [main] c.TestWaitNotify - 唤醒 obj 上其它线程
19:58:17.456 [Thread-1] c.TestWaitNotify - 其它代码....
19:58:17.456 [Thread-0] c.TestWaitNotify - 其它代码....

wait() 方法会释放对象的锁,进入 WaitSet 等待区,从而让其他线程就机会获取对象的锁。无限制等待,直到notify 为止

wait(long n) 有时限的等待, 到 n 毫秒后结束等待,或是被 notify

wait notify 的正确姿势

sleep(long n) 和 wait(long n) 的区别

  1. sleep 是 Thread 方法,而 wait 是 Object 的方法
  2. sleep 不需要强制和 synchronize 配合使用,但 wait 需要和 synchronize 一起用
  3. sleep 在睡眠的同时,不会释放对象锁的,但 wait 在等待的时候会释放对象锁
  4. 他们的状态都是TIMED_WAITING

模拟一些线程,共享使用资源Room,优化来达到线程安全

step1 : sleep会阻碍其它线程执行

1
2
3
static final Object room = new Object();
static boolean hasCigarette = false;//有没有烟
static boolean hasTakeout = false;

思考下面的解决方案好不好,为什么?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
new Thread(() -> {
synchronized (room) {
log.debug("有烟没?[{}]", hasCigarette);
if (!hasCigarette) {
log.debug("没烟,先歇会!");
sleep(2);
}
log.debug("有烟没?[{}]", hasCigarette);
if (hasCigarette) {
log.debug("可以开始干活了");
}
}
}, "小南").start();

for (int i = 0; i < 5; i++) {
new Thread(() -> {
synchronized (room) {
log.debug("可以开始干活了");
}
}, "其它人").start();
}

sleep(1);
new Thread(() -> {
// 这里能不能加 synchronized (room)? 不能
hasCigarette = true;
log.debug("烟到了噢!");
}, "送烟的").start();

输出

1
2
3
4
5
6
7
8
9
10
20:49:49.883 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:49:49.887 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:49:50.882 [送烟的] c.TestCorrectPosture - 烟到了噢!
20:49:51.887 [小南] c.TestCorrectPosture - 有烟没?[true]
20:49:51.887 [小南] c.TestCorrectPosture - 可以开始干活了
20:49:51.887 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.887 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
  • 其它干活的线程,都要一直阻塞,效率太低
  • 小南线程必须睡足 2s 后才能醒来,就算烟提前送到,也无法立刻醒来
  • 加了 synchronized (room) 后,就好比小南在里面反锁了门睡觉,烟根本没法送进门,main 没加 synchronized 就好像 main 线程是翻窗户进来的
  • sleep妨碍其它人干活

解决方法,使用 wait - notify

step 2 : wait替代sleep

思考下面的实现行吗,为什么?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
new Thread(() -> {
synchronized (room) {
log.debug("有烟没?[{}]", hasCigarette);
if (!hasCigarette) {
log.debug("没烟,先歇会!");
try {
room.wait(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("有烟没?[{}]", hasCigarette);
if (hasCigarette) {
log.debug("可以开始干活了");
}
}
}, "小南").start();

for (int i = 0; i < 5; i++) {
new Thread(() -> {
synchronized (room) {
log.debug("可以开始干活了");
}
}, "其它人").start();
}

sleep(1);
new Thread(() -> {
synchronized (room) {
hasCigarette = true;
log.debug("烟到了噢!");
room.notify();
}
}, "送烟的").start();

输出

1
2
3
4
5
6
7
8
9
10
20:51:42.489 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:51:42.493 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:51:42.493 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.493 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:43.490 [送烟的] c.TestCorrectPosture - 烟到了噢!
20:51:43.490 [小南] c.TestCorrectPosture - 有烟没?[true]
20:51:43.490 [小南] c.TestCorrectPosture - 可以开始干活了
  • 解决了其它干活的线程阻塞的问题
  • 但如果有其它线程也在等待条件呢?

step3 : 会发生虚假唤醒

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
new Thread(() -> {
synchronized (room) {
log.debug("有烟没?[{}]", hasCigarette);
if (!hasCigarette) {
log.debug("没烟,先歇会!");
try {
room.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("有烟没?[{}]", hasCigarette);
if (hasCigarette) {
log.debug("可以开始干活了");
} else {
log.debug("没干成活...");
}
}
}, "小南").start();

new Thread(() -> {
synchronized (room) {
Thread thread = Thread.currentThread();
log.debug("外卖送到没?[{}]", hasTakeout);
if (!hasTakeout) {
log.debug("没外卖,先歇会!");
try {
room.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("外卖送到没?[{}]", hasTakeout);
if (hasTakeout) {
log.debug("可以开始干活了");
} else {
log.debug("没干成活...");
}
}
}, "小女").start();

sleep(1);
new Thread(() -> {
synchronized (room) {
hasTakeout = true;
log.debug("外卖到了噢!");
room.notify();
}
}, "送外卖的").start();

输出

1
2
3
4
5
6
7
20:53:12.173 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:53:12.176 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:53:12.176 [小女] c.TestCorrectPosture - 外卖送到没?[false]
20:53:12.176 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:53:13.174 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:53:13.174 [小南] c.TestCorrectPosture - 有烟没?[false]
20:53:13.174 [小南] c.TestCorrectPosture - 没干成活...
  • notify 只能随机唤醒一个 WaitSet 中的线程,这时如果有其它线程也在等待,那么就可能唤醒不了正确的线程,称之为【虚假唤醒】
  • 发生虚假唤醒: 解决方法,改为 notifyAll

step4 : if+wait 仅由1次判断机会

1
2
3
4
5
6
7
new Thread(() -> {
synchronized (room) {
hasTakeout = true;
log.debug("外卖到了噢!");
room.notifyAll();
}
}, "送外卖的").start();

输出

1
2
3
4
5
6
7
8
9
20:55:23.978 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:55:23.982 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:55:23.982 [小女] c.TestCorrectPosture - 外卖送到没?[false]
20:55:23.982 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:55:24.979 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:55:24.979 [小女] c.TestCorrectPosture - 外卖送到没?[true]
20:55:24.980 [小女] c.TestCorrectPosture - 可以开始干活了
20:55:24.980 [小南] c.TestCorrectPosture - 有烟没?[false]
20:55:24.980 [小南] c.TestCorrectPosture - 没干成活...
  • 用 notifyAll 仅解决某个线程的唤醒问题,但使用 if + wait 判断仅有一次机会,一旦条件不成立,就没有重新判断的机会了
  • notifyAll唤醒了所有,但使用if+wait仅有一次机会,解决方法,一旦条件不成立,就没有重新判断的机会了.解决办法: 用 while + wait,当条件不成立,再次 wait

step5 : while+wait

将 if 改为 while

1
2
3
4
5
6
7
8
if (!hasCigarette) {
log.debug("没烟,先歇会!");
try {
room.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

改动后

1
2
3
4
5
6
7
8
while (!hasCigarette) {
log.debug("没烟,先歇会!");
try {
room.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

输出

1
2
3
4
5
6
7
8
20:58:34.322 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:58:34.326 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:58:34.326 [小女] c.TestCorrectPosture - 外卖送到没?[false]
20:58:34.326 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:58:35.323 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:58:35.324 [小女] c.TestCorrectPosture - 外卖送到没?[true]
20:58:35.324 [小女] c.TestCorrectPosture - 可以开始干活了
20:58:35.324 [小南] c.TestCorrectPosture - 没烟,先歇会!
1
2
3
4
5
6
7
8
9
10
11
synchronized(lock) {
while(条件不成立) {
lock.wait();
}
// 干活
}

//另一个线程
synchronized(lock) {
lock.notifyAll();
}

同步模式之保护性暂停

定义

即 Guarded Suspension,用在一个线程等待另一个线程的执行结果

要点:

  1. 有一个结果需要从一个线程传递到另一个线程,让他们关联同一个 GuardedObject
  2. 如果有结果不断从一个线程到另一个线程那么可以使用消息队列(见生产者/消费者)
  3. JDK 中,join 的实现、Future 的实现,采用的就是此模式
  4. 因为要等待另一方的结果,因此归类到同步模式

1594473284105

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
@Slf4j(topic = "c.Test")
public class Test {
public static void main(String[] args) throws InterruptedException {
//线程1 等待 线程2 的下载结果
GuardedObject guardedObject = new GuardedObject();
new Thread(() -> {
//等待结果
log.debug("等待结果");
Object list = guardedObject.get();
log.debug("结果大小:{}", list.size());
}, "t1").start();
new Thread(() -> {
log.debug("执行下载");
try {
List<String> list = Downloader.download();
guardedObject.complete(list);
} catch (IOException e) {
e.printStackTrace();
}
}, "t2").start();
}
}

class GuardedObject {
//结果
private Object response;
private final Object lock = new Object();

//获取结果
public Object get() {
synchronized (lock) {
// 条件不满足则等待
while (response == null) {
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
return response;
}
}

//产生结果
public void complete(Object response) {
synchronized (lock) {
// 条件满足,通知等待线程,给结果成员变量赋值
this.response = response;
lock.notifyAll();
}
}

}

带超时版 GuardedObject

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
@Slf4j(topic = "c.Test20")
public class Test {
public static void main(String[] args) throws InterruptedException {
//线程1 等待 线程2 的下载结果
GuardedObject guardedObject = new GuardedObject();
new Thread(() -> {
//等待结果
log.debug("等待结果");
Object list = guardedObject.get(2000);
log.debug("结果大小:{}", list.size());
}, "t1").start();

new Thread(() -> {
Sleeper.sleep(1);
log.debug("执行下载");
try {
List<String> list = Downloader.download();
guardedObject.complete(list);
} catch (IOException e) {
e.printStackTrace();
}
}, "t2").start();
}
}

// 增加超时效果
class GuardedObject {

// 结果
private Object response;

// 获取结果
// timeout 表示要等待多久 2000
public Object get(long timeout) {
synchronized (this) {
// 开始时间 15:00:00
long begin = System.currentTimeMillis();
// 经历的时间
long passedTime = 0;
while (response == null) {
// 这一轮循环应该等待的时间
long waitTime = timeout - passedTime;
// 经历的时间超过了最大等待时间时,退出循环
if (timeout - passedTime <= 0) {
break;
}
try {
this.wait(waitTime); // 虚假唤醒 15:00:01
} catch (InterruptedException e) {
e.printStackTrace();
}
// 求得经历时间
passedTime = System.currentTimeMillis() - begin; // 15:00:02 1s
}
return response;
}
}

// 产生结果
public void complete(Object response) {
synchronized (this) {
// 给结果成员变量赋值
this.response = response;
this.notifyAll();
}
}
}

原理之 join

关于超时的增强,在join(long millis) 的源码中得到了体现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public final synchronized void join(long millis) throws InterruptedException {
//开始时间
long base = System.currentTimeMillis();
//经历时间
long now = 0;

//如果等待时间小于0
if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}

if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
// join一个指定的时间
while (isAlive()) {
long delay = millis - now;
if (delay <= 0) {
break;
}
wait(delay);
now = System.currentTimeMillis() - base;
}
}
}

多任务版 GuardedObject

图中 Futures 就好比居民楼一层的信箱(每个信箱有房间编号),左侧的 t0,t2,t4 就好比等待邮件的居民,右侧的 t1,t3,t5 就好比邮递员

如果需要在多个类之间使用 GuardedObject 对象,作为参数传递不是很方便,因此设计一个用来解耦的中间类,这样不仅能够解耦【结果等待者】和【结果生产者】,还能够同时支持多个任务的管理。

和生产者消费者模式的区别就是:这个生产者和消费者之间是一一对应的关系,但是生产者消费者模式并不是。rpc框架的调用中就使用到了这种模式。

1594518049426

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
@Slf4j(topic = "c.Test")
public class Test {
public static void main(String[] args) throws InterruptedException {
for (int i = 0; i < 3; i++) {
new People().start();
}
Sleeper.sleep(1);
for (Integer id : Mailboxes.getIds()) {
new Postman(id, "内容" + id).start();
}
}
}

//居民类
@Slf4j(topic = "c.People")
class People extends Thread{
@Override
public void run() {
// 收信
GuardedObject guardedObject = Mailboxes.createGuardedObject();
log.debug("开始收信 id:{}", guardedObject.getId());
Object mail = guardedObject.get(5000);
log.debug("收到信 id:{}, 内容:{}", guardedObject.getId(), mail);
}
}

//邮递员类
@Slf4j(topic = "c.Postman")
class Postman extends Thread {
//邮箱id
private int id;
//邮件内容
private String mail;

public Postman(int id, String mail) {
this.id = id;
this.mail = mail;
}

@Override
public void run() {
GuardedObject guardedObject = Mailboxes.getGuardedObject(id);
log.debug("送信 id:{}, 内容:{}", id, mail);
guardedObject.complete(mail);
}
}

//解耦类
class Mailboxes {
private static Map<Integer, GuardedObject> boxes = new Hashtable<>();

private static int id = 1;
// 产生唯一 id
private static synchronized int generateId() {
return id++;
}

public static GuardedObject getGuardedObject(int id) {
return boxes.remove(id);
}

public static GuardedObject createGuardedObject() {
GuardedObject go = new GuardedObject(generateId());
boxes.put(go.getId(), go);
return go;
}

public static Set<Integer> getIds() {
return boxes.keySet();
}
}

// 增加超时效果
class GuardedObject {

// 标识 Guarded Object
private int id;

public GuardedObject(int id) {
this.id = id;
}

public int getId() {
return id;
}

// 结果
private Object response;

// 获取结果
// timeout 表示要等待多久 2000
public Object get(long timeout) {
synchronized (this) {
// 开始时间 15:00:00
long begin = System.currentTimeMillis();
// 经历的时间
long passedTime = 0;
while (response == null) {
// 这一轮循环应该等待的时间
long waitTime = timeout - passedTime;
// 经历的时间超过了最大等待时间时,退出循环
if (timeout - passedTime <= 0) {
break;
}
try {
this.wait(waitTime); // 虚假唤醒 15:00:01
} catch (InterruptedException e) {
e.printStackTrace();
}
// 求得经历时间
passedTime = System.currentTimeMillis() - begin; // 15:00:02 1s
}
return response;
}
}

// 产生结果
public void complete(Object response) {
synchronized (this) {
// 给结果成员变量赋值
this.response = response;
this.notifyAll();
}
}
}

异步模式之生产者/消费者

定义

要点

  1. 与前面的保护性暂停中的 GuardObject 不同,不需要产生结果和消费结果的线程一一对应
  2. 消费队列可以用来平衡生产和消费的线程资源
  3. 生产者仅负责产生结果数据,不关心数据该如何处理,而消费者专心处理结果数据
  4. 消息队列是有容量限制的,满时不会再加入数据,空时不会再消耗数据
  5. JDK 中各种阻塞队列,采用的就是这种模式

“异步”的意思就是生产者产生消息之后消息没有被立刻消费,而“同步模式”中,消息在产生之后被立刻消费了。

1594524622020

我们写一个线程间通信的消息队列,要注意区别,像 rabbit mq 等消息框架是进程间通信的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
@Slf4j(topic = "c.Test2")
public class Test2 {

public static void main(String[] args) {
MessageQueue queue = new MessageQueue(2);

//三个生产者线程
for (int i = 0; i < 3; i++) {
int id = i;
new Thread(() -> {
queue.put(new Message(id , "值"+id));
}, "生产者" + i).start();
}

//一个消费者线程
new Thread(() -> {
while(true) {
sleep(1);
Message message = queue.take();
}
}, "消费者").start();
}

}

//消息类
class Message {
private int id;
private Object message;
public Message(int id, Object message) {
this.id = id;
this.message = message;
}
public int getId() {
return id;
}
public Object getMessage() {
return message;
}
@Override
public String toString() {
return "Message{" +
"id=" + id +
", value=" + value +
'}';
}
}

//消息队列类,Java线程之间通信
class MessageQueue {
private LinkedList<Message> queue;
//队列容量
private int capacity;

public MessageQueue(int capacity) {
this.capacity = capacity;
queue = new LinkedList<>();
}

//获取消息
public Message take() {
synchronized (queue) {
//检查队列是否为空
while (queue.isEmpty()) {
log.debug("没货了, wait");
try {
queue.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//从队列的头部获取消息并返回
Message message = queue.removeFirst();
queue.notifyAll();
return message;
}
}

//存入消息
public void put(Message message) {
synchronized (queue) {
while (queue.size() == capacity) {
log.debug("库存已达上限, wait");
try {
queue.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//将消息加入队列尾部
queue.addLast(message);
//线程唤醒
queue.notifyAll();
}
}
}

结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10:48:38.070 [生产者3] c.TestProducerConsumer - download...
10:48:38.070 [生产者0] c.TestProducerConsumer - download...
10:48:38.070 [消费者] c.MessageQueue - 没货了, wait
10:48:38.070 [生产者1] c.TestProducerConsumer - download...
10:48:38.070 [生产者2] c.TestProducerConsumer - download...
10:48:41.236 [生产者1] c.TestProducerConsumer - try put message(1)
10:48:41.237 [生产者2] c.TestProducerConsumer - try put message(2)
10:48:41.236 [生产者0] c.TestProducerConsumer - try put message(0)
10:48:41.237 [生产者3] c.TestProducerConsumer - try put message(3)
10:48:41.239 [生产者2] c.MessageQueue - 库存已达上限, wait
10:48:41.240 [生产者1] c.MessageQueue - 库存已达上限, wait
10:48:41.240 [消费者] c.TestProducerConsumer - take message(0): [3] lines
10:48:41.240 [生产者2] c.MessageQueue - 库存已达上限, wait
10:48:41.240 [消费者] c.TestProducerConsumer - take message(3): [3] lines
10:48:41.240 [消费者] c.TestProducerConsumer - take message(1): [3] lines
10:48:41.240 [消费者] c.TestProducerConsumer - take message(2): [3] lines
10:48:41.240 [消费者] c.MessageQueue - 没货了, wait

Park & Unpack

基本使用

它们是 LockSupport 类中的方法

1
2
3
4
// 暂停当前线程
LockSupport.park();
// 恢复某个线程的运行
LockSupport.unpark(暂停的线程对象);

先 park 再 unpark,park 对应的线程状态为 WAIT

1
2
3
4
5
6
7
8
9
10
11
12
Thread t1 = new Thread(() -> {
log.debug("start...");
sleep(1);
log.debug("park...");
LockSupport.park();
log.debug("resume...");
},"t1");
t1.start();

sleep(2);
log.debug("unpark...");
LockSupport.unpark(t1);

输出

1
2
3
4
18:42:52.585 c.TestParkUnpark [t1] - start... 
18:42:53.589 c.TestParkUnpark [t1] - park...
18:42:54.583 c.TestParkUnpark [main] - unpark...
18:42:54.583 c.TestParkUnpark [t1] - resume...

先 unpark 再 park

1
2
3
4
5
6
7
8
9
10
11
12
Thread t1 = new Thread(() -> {
log.debug("start...");
sleep(2);
log.debug("park...");
LockSupport.park();
log.debug("resume...");
}, "t1");
t1.start();

sleep(1);
log.debug("unpark...");
LockSupport.unpark(t1);

输出

1
2
3
4
18:43:50.765 c.TestParkUnpark [t1] - start... 
18:43:51.764 c.TestParkUnpark [main] - unpark...
18:43:52.769 c.TestParkUnpark [t1] - park...
18:43:52.769 c.TestParkUnpark [t1] - resume...

特点

与 Object 的 wait & notify 相比

  • wait,notify 和 notifyAll 必须配合 Object Monitor 一起使用,而 park,unpark 不必
  • park & unpark 是以线程为单位来【阻塞】和【唤醒】线程,而 notify 只能随机唤醒一个等待线程,notifyAll 是唤醒所有等待线程,就不那么【精确】
  • park & unpark 可以先 unpark,而 wait & notify 不能先 notify

park & unpark 原理

每个线程都有自己的一个 Parker 对象,由三部分组成 _counter_cond_mutex

打个比喻

  • 线程就像一个旅人,Parker 就像他随身携带的背包,条件变量 _ cond就好比背包中的帐篷,_counter 就好比背包中的备用干粮(0 为耗尽,1 为充足)

  • 调用 park 就是要看需不需要停下来歇息

    • 如果备用干粮耗尽,那么钻进帐篷歇息
    • 如果备用干粮充足,那么不需停留,继续前进
  • 调用 unpark,就好比令干粮充足

    • 如果这时线程还在帐篷,就唤醒让他继续前进
    • 如果这时线程还在运行,那么下次他调用 park 时,仅是消耗掉备用干粮,不需停留继续前进
      • 因为背包空间有限,多次调用 unpark 仅会补充一份备用干粮,也就是多次 unpark 后只会让紧跟着的一次 park 失效

先调用 park 再调用 upark

1594531894163

  1. 当前线程调用 Unsafe.park() 方法
  2. 检查 _counter ,本情况为 0,这时,获得 _mutex 互斥锁(mutex对象有个等待队列 _cond)
  3. 线程进入 _cond 条件变量阻塞
  4. 设置 _counter = 0

1594532057205

  1. 调用 Unsafe.unpark(Thread_0) 方法,设置 _counter 为 1
  2. 唤醒 _cond 条件变量中的 Thread_0
  3. Thread_0 恢复运行
  4. 设置 _counter 为 0

先调用 upark 再调用 park

1594532135616

  1. 调用 Unsafe.unpark(Thread_0) 方法,设置 _counter 为 1
  2. 当前线程调用 Unsafe.park() 方法
  3. 检查 _counter ,本情况为 1,这时线程无需阻塞,继续运行
  4. 设置 _counter 为 0

线程状态转换

image.png

情况1 NEW –> RUNNABLE

当调用 t.start() 方法时,由 NEW –> RUNNABLE

情况2 RUNNABLE <–> WAITING

t 线程synchronized(obj) 获取了对象锁后

  • 调用 obj.wait() 方法时,t 线程从 RUNNABLE –> WAITING

  • 调用 obj.notify() , obj.notifyAll() , t.interrupt() 时

    • 竞争锁成功,t 线程从WAITING –> RUNNABLE

    • 竞争锁失败,t 线程从WAITING –> BLOCKED

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class TestWaitNotify {
final static Object obj = new Object();

public static void main(String[] args) {

new Thread(() -> {
synchronized (obj) {
log.debug("执行....");
try {
obj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug("其它代码...."); // 断点
}
},"t1").start();

new Thread(() -> {
synchronized (obj) {
log.debug("执行....");
try {
obj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug("其它代码...."); // 断点
}
},"t2").start();

sleep(0.5);
log.debug("唤醒 obj 上其它线程");
synchronized (obj) {
obj.notifyAll(); // 唤醒obj上所有等待线程 断点
}

}
}

情况 3 RUNNABLE <–> WAITING

  • 当前线程调用 t.join() 方法时,当前线程从 RUNNABLE –> WAITING

    • 注意是当前线程t 线程对象的监视器上等待
  • t 线程运行结束,或调用了当前线程的 interrupt() 时,当前线程从 WAITING –> RUNNABLE

情况 4 RUNNABLE <–> WAITING

  • 当前线程调用 LockSupport.park() 方法会让当前线程从 RUNNABLE –> WAITING
  • 调用 LockSupport.unpark(目标线程) 或调用了线程 的 interrupt() ,会让目标线程从 WAITING –>RUNNABLE

情况 5 RUNNABLE <–> TIMED_WAITING

t 线程用 synchronized(obj) 获取了对象锁后

  • 调用 obj.wait(long n) 方法时,t 线程从 RUNNABLE –> TIMED_WAITING

  • t 线程等待时间超过了 n 毫秒,或调用 obj.notify() , obj.notifyAll() , t.interrupt() 时

    • 竞争锁成功,t 线程从TIMED_WAITING –> RUNNABLE

    • 竞争锁失败,t 线程从TIMED_WAITING –> BLOCKED

情况 6 RUNNABLE <–> TIMED_WAITING

  • 当前线程调用 t.join(long n) 方法时,当前线程从 RUNNABLE –> TIMED_WAITING

    • 注意是当前线程t 线程对象的监视器上等待
  • 当前线程等待时间超过了 n 毫秒,或t 线程运行结束,或调用了当前线程的 interrupt() 时,当前线程从 TIMED_WAITING –> RUNNABLE

情况 7 RUNNABLE <–> TIMED_WAITING

  • 当前线程调用 Thread.sleep(long n) ,当前线程从 RUNNABLE –> TIMED_WAITING
  • 当前线程等待时间超过了 n 毫秒,当前线程从TIMED_WAITING –> RUNNABLE

情况 8 RUNNABLE <–> TIMED_WAITING

  • 当前线程调用 LockSupport.parkNanos(long nanos) 或 LockSupport.parkUntil(long millis) 时,当前线程从 RUNNABLE –> TIMED_WAITING
  • 调用 LockSupport.unpark(目标线程) 或调用了线程 的 interrupt() ,或是等待超时,会让目标线程从 TIMED_WAITING–> RUNNABLE

情况 9 RUNNABLE <–> BLOCKED

  • t 线程用synchronized(obj) 获取对象锁时如果竞争失败,从RUNNABLE –> BLOCKED
  • 持 obj 锁线程的同步代码块执行完毕,会唤醒该对象上所有 BLOCKED的线程重新竞争,如果其中 t 线程竞争 成功,从 BLOCKED –> RUNNABLE ,其它失败的线程仍然BLOCKED

情况 10 RUNNABLE –> TERMINATED

当前线程所有代码运行完毕,进入 TERMINATED

img

多把锁&活跃性

多把锁

多把不相干的锁

一间大屋子有两个功能:睡觉、学习,互不相干。

现在小南要学习,小女要睡觉,但如果只用一间屋子(一个对象锁)的话,那么并发度很低

解决方法是准备多个房间(多个对象锁)

例如

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class BigRoom {

public void sleep() {
synchronized (this) {
log.debug("sleeping 2 小时");
Sleeper.sleep(2);
}
}

public void study() {
synchronized (this) {
log.debug("study 1 小时");
Sleeper.sleep(1);
}
}


}

执行

1
2
3
4
5
6
7
8
9
BigRoom bigRoom = new BigRoom();

new Thread(() -> {
bigRoom.study();
},"小南").start();

new Thread(() -> {
bigRoom.sleep();
},"小女").start();

某次结果

1
2
12:13:54.471 [小南] c.BigRoom - study 1 小时
12:13:55.476 [小女] c.BigRoom - sleeping 2 小时

改进

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class BigRoom {
private final Object studyRoom = new Object();
private final Object bedRoom = new Object();

public void sleep() {
synchronized (bedRoom) {
log.debug("sleeping 2 小时");
Sleeper.sleep(2);
}
}

public void study() {
synchronized (studyRoom) {
log.debug("study 1 小时");
Sleeper.sleep(1);
}
}

}

某次执行结果

1
2
12:15:35.069 [小南] c.BigRoom - study 1 小时
12:15:35.069 [小女] c.BigRoom - sleeping 2 小时

将锁的粒度细分

  • 好处,是可以增强并发度
  • 坏处,如果一个线程需要同时获得多把锁,就容易发生死锁

活跃性

线程是为任务而生的,理想情况下,我们希望线程能一直处于运行(Runnable)状态,但是会由于一些因素,如处理器资源有限导致的上下文切换、程序自身的错误和缺陷。这些由于资源稀缺或者程序自身问题导致线程无法一直处于 Runnable 状态运行下去,又或者因为线程处于 Runnable 状态但是其要执行的任务一直无法进展的现象就被称为线程活跃性问题或活性故障

死锁

有这样的情况:一个线程需要同时获取多把锁,这时就容易发生死锁

t1 线程获得A对象锁,接下来想获取B对象的锁

t2 线程获得B对象锁,接下来想获取A对象的锁例。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
@Slf4j(topic = "c.TestDeadLock")
public class TestDeadLock {
public static void main(String[] args) {
test1();
}

private static void test1() {
Object A = new Object();
Object B = new Object();
Thread t1 = new Thread(() -> {
synchronized (A) {
log.debug("lock A");
sleep(1);
synchronized (B) {
log.debug("lock B");
log.debug("操作...");
}
}
}, "t1");

Thread t2 = new Thread(() -> {
synchronized (B) {
log.debug("lock B");
sleep(0.5);
synchronized (A) {
log.debug("lock A");
log.debug("操作...");
}
}
}, "t2");
t1.start();
t2.start();
}
}

定位死锁

检测死锁可以使用 jconsole工具;或者使用 jps 定位进程 id,再用 jstack 定位死锁

下面使用jstack工具进行演示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
PS D:\JavaProjects\concurrent\case_java8\target\classes\cn\itcast\test> jps
209488
233168 Launcher
226088 TestDeadLock
233484 Jps
PS D:\JavaProjects\concurrent\case_java8\target\classes\cn\itcast\test> jstack 226088
2022-08-16 17:05:33
Full thread dump Java HotSpot(TM) 64-Bit Server VM (25.181-b13 mixed mode):

"DestroyJavaVM" #14 prio=5 os_prio=0 tid=0x0000000002cb3800 nid=0x37fe8 waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE

"t2" #13 prio=5 os_prio=0 tid=0x000000001f8a3000 nid=0x38d30 waiting for monitor entry [0x000000002008f000]
java.lang.Thread.State: BLOCKED (on object monitor)
at cn.itcast.n4.deadlock.TestDeadLock.lambda$test1$1(TestDeadLock.java:32)
- waiting to lock <0x000000076c063b50> (a java.lang.Object)
- locked <0x000000076c063b60> (a java.lang.Object)
at cn.itcast.n4.deadlock.TestDeadLock$$Lambda$2/1321640594.run(Unknown Source)
at java.lang.Thread.run(Thread.java:748)

"t1" #12 prio=5 os_prio=0 tid=0x000000001f8a2000 nid=0x390e4 waiting for monitor entry [0x000000001ff8f000]
java.lang.Thread.State: BLOCKED (on object monitor)
at cn.itcast.n4.deadlock.TestDeadLock.lambda$test1$0(TestDeadLock.java:21)
- waiting to lock <0x000000076c063b60> (a java.lang.Object)
- locked <0x000000076c063b50> (a java.lang.Object)
at cn.itcast.n4.deadlock.TestDeadLock$$Lambda$1/381707837.run(Unknown Source)
at java.lang.Thread.run(Thread.java:748)

Found one Java-level deadlock:
=============================
"t2":
waiting to lock monitor 0x000000001cc91018 (object 0x000000076c063b68, a java.lang.Object),
which is held by "t1"
"t1":
waiting to lock monitor 0x000000001cc93328 (object 0x000000076c063b78, a java.lang.Object),
which is held by "t2"

哲学家就餐问题

1594553609905

有五位哲学家,围坐在圆桌旁。

  • 他们只做两件事,思考和吃饭,思考一会吃口饭,吃完饭后接着思考。
  • 吃饭时要用两根筷子吃,桌上共有 5 根筷子,每位哲学家左右手边各有一根筷子。
  • 如果筷子被身边的人拿着,自己就得等待

当每个哲学家即线程持有一根筷子时,他们都在等待另一个线程释放锁,因此造成了死锁。这种线程没有按预期结束,执行不下去的情况,归类为【活跃性】问题,除了死锁以外,还有活锁和饥饿者两种情 况

1
2
3
4
5
6
7
8
9
10
11
12
13
//筷子类
class Chopstick {
String name;

public Chopstick(String name) {
this.name = name;
}

@Override
public String toString() {
return "筷子{" + name + '}';
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
//哲学家类
class Philosopher extends Thread {
Chopstick left;
Chopstick right;

public Philosopher(String name, Chopstick left, Chopstick right) {
super(name);
this.left = left;
this.right = right;
}

private void eat() {
log.debug("eating...");
Sleeper.sleep(1);
}

@Override
public void run() {
while (true) {
// 获得左手筷子
synchronized (left) {
// 获得右手筷子
synchronized (right) {
// 吃饭
eat();
}
// 放下右手筷子
}
// 放下左手筷子
}
}

}
1
2
3
4
5
6
7
8
9
10
11
12
//就餐
Chopstick c1 = new Chopstick("1");
Chopstick c2 = new Chopstick("2");
Chopstick c3 = new Chopstick("3");
Chopstick c4 = new Chopstick("4");
Chopstick c5 = new Chopstick("5");

new Philosopher("苏格拉底", c1, c2).start();
new Philosopher("柏拉图", c2, c3).start();
new Philosopher("亚里士多德", c3, c4).start();
new Philosopher("赫拉克利特", c4, c5).start();
new Philosopher("阿基米德", c5, c1).start();

执行不多会,就执行不下去了

1
2
3
4
5
12:33:15.575 [苏格拉底] c.Philosopher - eating... 
12:33:15.575 [亚里士多德] c.Philosopher - eating...
12:33:16.580 [阿基米德] c.Philosopher - eating...
12:33:17.580 [阿基米德] c.Philosopher - eating...
// 卡在这里, 不向下运行

使用 jconsole 检测死锁,发现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
-------------------------------------------------------------------------
名称: 阿基米德
状态: cn.itcast.Chopstick@1540e19d (筷子1) 上的BLOCKED, 拥有者: 苏格拉底
总阻止数: 2, 总等待数: 1

堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
- 已锁定 cn.itcast.Chopstick@6d6f6e28 (筷子5)
-------------------------------------------------------------------------
名称: 苏格拉底
状态: cn.itcast.Chopstick@677327b6 (筷子2) 上的BLOCKED, 拥有者: 柏拉图
总阻止数: 2, 总等待数: 1

堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
- 已锁定 cn.itcast.Chopstick@1540e19d (筷子1)
-------------------------------------------------------------------------
名称: 柏拉图
状态: cn.itcast.Chopstick@14ae5a5 (筷子3) 上的BLOCKED, 拥有者: 亚里士多德
总阻止数: 2, 总等待数: 0

堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
- 已锁定 cn.itcast.Chopstick@677327b6 (筷子2)
-------------------------------------------------------------------------
名称: 亚里士多德
状态: cn.itcast.Chopstick@7f31245a (筷子4) 上的BLOCKED, 拥有者: 赫拉克利特
总阻止数: 1, 总等待数: 1

堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
- 已锁定 cn.itcast.Chopstick@14ae5a5 (筷子3)
-------------------------------------------------------------------------
名称: 赫拉克利特
状态: cn.itcast.Chopstick@6d6f6e28 (筷子5) 上的BLOCKED, 拥有者: 阿基米德
总阻止数: 2, 总等待数: 0

堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
- 已锁定 cn.itcast.Chopstick@7f31245a (筷子4)

这种线程没有按预期结束,执行不下去的情况,归类为【活跃性】问题,除了死锁以外,还有活锁和饥饿者两种情况

活锁

活锁出现在两个线程互相改变对方的结束条件,最后谁也无法结束,例如

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class TestLiveLock {
static volatile int count = 10;
static final Object lock = new Object();

public static void main(String[] args) {
new Thread(() -> {
// 期望减到 0 退出循环
while (count > 0) {
sleep(0.2);
count--;
log.debug("count: {}", count);
}
}, "t1").start();

new Thread(() -> {
// 期望超过 20 退出循环
while (count < 20) {
sleep(0.2);
count++;
log.debug("count: {}", count);
}
}, "t2").start();

}
}

饥饿

很多教程中把饥饿定义为,一个线程由于优先级太低,始终得不到 CPU 调度执行,也不能够结束,饥饿的情况不易演示,讲读写锁时会涉及饥饿问题

下面我讲一下一个线程饥饿的例子,先来看看使用顺序加锁的方式解决之前的死锁问题,就是两个线程对两个不同的对象加锁的时候都使用相同的顺序进行加锁。 但是会产生饥饿问题

202201021516316

顺序加锁的解决方案

1594558499871

ReentrantLock

相对于 synchronized 它具备如下特点

  1. 可中断
  2. 可以设置超时时间
  3. 可以设置为公平锁
  4. 支持多个条件变量,即对与不满足条件的线程可以放到不同的集合中等待

与 synchronized 一样,都支持可重入

基本语法

1
2
3
4
5
6
7
8
// 获取锁
reentrantLock.lock();
try {
// 临界区
} finally {
// 释放锁
reentrantLock.unlock();
}

可重入

可重入是指同一个线程如果首次获得了这把锁,那么因为它是这把锁的拥有者,因此有权利再次获取这把锁。如果是不可重入锁,那么第二次获得锁时,自己也会被锁挡住

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
@Slf4j(topic = "c.TestReentrant")
public class TestReentrant {
static ReentrantLock lock = new ReentrantLock();

public static void main(String[] args) {
method1();
}

public static void method1() {
lock.lock();
try {
log.debug("execute method1");
method2();
} finally {
lock.unlock();
}
}

public static void method2() {
lock.lock();
try {
log.debug("execute method2");
method3();
} finally {
lock.unlock();
}
}

public static void method3() {
lock.lock();
try {
log.debug("execute method3");
} finally {
lock.unlock();
}
}
}

可打断

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/**
* 测试使用lock.lock加锁时线程被打断时的效果
*/
@Slf4j(topic = "c.TestInterrupt")
public class TestInterrupt {
public static void main(String[] args) {
test1();
}

private static void test2() {
ReentrantLock lock = new ReentrantLock();

Thread t1 = new Thread(() -> {
log.debug("启动...");
lock.lock();
try {
log.debug("获得了锁");
} finally {
lock.unlock();
}
}, "t1");


lock.lock();
log.debug("获得了锁");
t1.start();
try {
sleep(1);
t1.interrupt();
log.debug("执行打断");
sleep(1);
} finally {
log.debug("释放了锁");
lock.unlock();
}
}

private static void test1() {
ReentrantLock lock = new ReentrantLock();

Thread t1 = new Thread(() -> {
log.debug("启动...");
try {
//如果没有竞争那么此方法就会获取 lock 对象锁
//如果有竞争就进入阻塞队列,可以被其他线程用 interrupt 方法打断
lock.lockInterruptibly();
} catch (InterruptedException e) {
e.printStackTrace();
log.debug("等锁的过程中被打断");
return;
}
try {
log.debug("获得了锁");
} finally {
lock.unlock();
}
}, "t1");


lock.lock();
log.debug("获得了锁");
t1.start();
try {
sleep(1);
t1.interrupt();
log.debug("执行打断");
} finally {
lock.unlock();
}
}
}

锁超时

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
@Slf4j(topic = "c.TestTimeout")
public class TestTimeout {
public static void main(String[] args) {
test1();
}

private static void test1() {
ReentrantLock lock = new ReentrantLock();
Thread t1 = new Thread(() -> {
log.debug("启动...");
try {
if (!lock.tryLock(1, TimeUnit.SECONDS)) {
log.debug("获取等待 1s 后失败,返回");
return;
}
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
log.debug("获得了锁");
} finally {
lock.unlock();
}
}, "t1");

lock.lock();
log.debug("获得了锁");
t1.start();
try {
sleep(2);
} finally {
lock.unlock();
}
}
private static void test2() {
ReentrantLock lock = new ReentrantLock();
Thread t1 = new Thread(() -> {
log.debug("启动...");
if (!lock.tryLock()) {
log.debug("获取立刻失败,返回");
return;
}
try {
log.debug("获得了锁");
} finally {
lock.unlock();
}
}, "t1");

lock.lock();
log.debug("获得了锁");
t1.start();
try {
sleep(2);
} finally {
lock.unlock();
}
}
}

使用锁超时解决哲学家就餐死锁问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
@Slf4j
/**
* 使用reentrantlock中的tryLock来获取锁来解决哲学家就餐问题,这样就不会造成死锁!
*/
public class Test33 extends Thread{

public static void main(String[] args) {
Chopstick2 c1 = new Chopstick2("1");
Chopstick2 c2 = new Chopstick2("2");
Chopstick2 c3 = new Chopstick2("3");
Chopstick2 c4 = new Chopstick2("4");
Chopstick2 c5 = new Chopstick2("5");
new Philosopher2("苏格拉底", c1, c2).start();
new Philosopher2("柏拉图", c2, c3).start();
new Philosopher2("亚里士多德", c3, c4).start();
new Philosopher2("赫拉克利特", c4, c5).start();
new Philosopher2("阿基米德", c5, c1).start();
}

}

@Slf4j(topic = "Philosopher")
class Philosopher2 extends Thread{
Chopstick2 left;
Chopstick2 right;
public Philosopher2(String name, Chopstick2 left, Chopstick2 right) {
super(name);
this.left = left;
this.right = right;
}
private void eat() {
log.debug("eating...");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}

@Override
public void run() {
while (true) {
try {
if (left.tryLock(2, TimeUnit.SECONDS)){
try {
if (right.tryLock(2, TimeUnit.SECONDS)){
try {
eat();
}finally {
right.unlock();
}
}
}finally {
left.unlock();
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}


}
}
}

class Chopstick2 extends ReentrantLock {
private String name ;

public Chopstick2(String name) {
this.name = name;
}


@Override
public String toString() {
return "Chopstick{" +
"name='" + name + '\'' +
'}';
}
}

公平锁

公平: 先来就能先执行

不公平: 不保证先来就先执行

synchronized锁中,在 entrylist 等待的锁在竞争时不是按照先到先得来获取锁的,所以说 synchronized 锁是不公平的;ReentranLock锁默认是不公平的,但是可以通过设置实现公平锁。本意是为了解决之前提到的饥饿问题,但是公平锁一般没有必要,会降低并发度,使用 trylock 也可以实现。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public class TestFair {
public static void main(String[] args) throws InterruptedException {
ReentrantLock lock = new ReentrantLock(true);

lock.lock();
for (int i = 0; i < 20; i++) {
new Thread(() -> {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " running...");
} finally {
lock.unlock();
}
}, "t" + i).start();
}

// 1s 之后去争抢锁
Thread.sleep(1000);
for (int i = 0; i < 5; i++) {
new Thread(() -> {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " running...");
} finally {
lock.unlock();
}
}, "强行插入").start();
}
lock.unlock();
}
}

条件变量

synchronized 中也有条件变量,就是我们讲原理时那个 waitSet 休息室,当条件不满足时进入 waitSet 等待

ReentrantLock 的条件变量比 synchronized 强大之处在于,它是支持多个条件变量的,这就好比

  • synchronized 是那些不满足条件的线程都在一间休息室等消息
  • ReentrantLock 支持多间休息室,有专门等烟的休息室、专门等早餐的休息室、唤醒时也是按休息室来唤醒

使用流程

  • await 前需要获得锁
  • await 执行后,会释放锁,进入 conditionObject 等待
  • await 的线程被唤醒(或打断、或超时)去重新竞争 lock 锁,执行唤醒的线程也必须先获得锁
  • 竞争 lock 锁成功后,从 await 后继续执行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
@Slf4j(topic = "c.Test24")
public class Test24 {
static final Object room = new Object();
static boolean hasCigarette = false;
static boolean hasTakeout = false;
static ReentrantLock ROOM = new ReentrantLock();
// 等待烟的休息室
static Condition waitCigaretteSet = ROOM.newCondition();
// 等外卖的休息室
static Condition waitTakeoutSet = ROOM.newCondition();

public static void main(String[] args) {


new Thread(() -> {
ROOM.lock();
try {
log.debug("有烟没?[{}]", hasCigarette);
while (!hasCigarette) {
log.debug("没烟,先歇会!");
try {
waitCigaretteSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("可以开始干活了");
} finally {
ROOM.unlock();
}
}, "小南").start();

new Thread(() -> {
ROOM.lock();
try {
log.debug("外卖送到没?[{}]", hasTakeout);
while (!hasTakeout) {
log.debug("没外卖,先歇会!");
try {
waitTakeoutSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("可以开始干活了");
} finally {
ROOM.unlock();
}
}, "小女").start();

sleep(1);
new Thread(() -> {
ROOM.lock();
try {
hasTakeout = true;
waitTakeoutSet.signal();
} finally {
ROOM.unlock();
}
}, "送外卖的").start();

sleep(1);

new Thread(() -> {
ROOM.lock();
try {
hasCigarette = true;
waitCigaretteSet.signal();
} finally {
ROOM.unlock();
}
}, "送烟的").start();
}

}

同步模式之顺序控制

固定运行顺序

比如,必须先 2 后 1 打印

wait notify 版

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
@Slf4j(topic = "c.Test")
public class Test {
static final Object lock = new Object();
// t2运行标记,表示 t2 是否运行过
static boolean t2runned = false;

public static void main(String[] args) {
Thread t1 = new Thread(() -> {
synchronized (lock) {
//如果 t2 没有执行过
while (!t2runned) {
try {
//t1 等待
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("1");
}
}, "t1");


Thread t2 = new Thread(() -> {
synchronized (lock) {
log.debug("2");
t2runned = true;
lock.notify();
}
}, "t2");

t1.start();
t2.start();
}
}

Park Unpark 版

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
@Slf4j(topic = "c.Test26")
public class Test26 {
public static void main(String[] args) {

Thread t1 = new Thread(() -> {
LockSupport.park();
log.debug("1");
}, "t1");
t1.start();

new Thread(() -> {
log.debug("2");
LockSupport.unpark(t1);
},"t2").start();
}
}

交替输出

线程 1 输出 a 5 次,线程 2 输出 b 5 次,线程 3 输出 c 5 次。现在要求输出 abcabcabcabcabc 怎么实现

wait notify 版

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
@Slf4j(topic = "c.Test27")
public class Test27 {
public static void main(String[] args) {
WaitNotify wn = new WaitNotify(1, 5);
new Thread(() -> {
wn.print("a", 1, 2);
}).start();
new Thread(() -> {
wn.print("b", 2, 3);
}).start();
new Thread(() -> {
wn.print("c", 3, 1);
}).start();
}
}

/*
输出内容 等待标记 下一个标记
a 1 2
b 2 3
c 3 1
*/
class WaitNotify {
// 打印 a 1 2
public void print(String str, int waitFlag, int nextFlag) {
for (int i = 0; i < loopNumber; i++) {
synchronized (this) {
while(flag != waitFlag) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.print(str);
flag = nextFlag;
this.notifyAll();
}
}
}

// 等待标记
private int flag; // 2
// 循环次数
private int loopNumber;

public WaitNotify(int flag, int loopNumber) {
this.flag = flag;
this.loopNumber = loopNumber;
}
}

Lock 条件变量版

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
public class Test30 {
public static void main(String[] args) throws InterruptedException {
AwaitSignal awaitSignal = new AwaitSignal(5);
Condition a = awaitSignal.newCondition();
Condition b = awaitSignal.newCondition();
Condition c = awaitSignal.newCondition();
new Thread(() -> {
awaitSignal.print("a", a, b);
}).start();
new Thread(() -> {
awaitSignal.print("b", b, c);
}).start();
new Thread(() -> {
awaitSignal.print("c", c, a);
}).start();

Thread.sleep(1000);
awaitSignal.lock();
try {
System.out.println("开始...");
a.signal();
} finally {
awaitSignal.unlock();
}

}
}

class AwaitSignal extends ReentrantLock{
private int loopNumber;

public AwaitSignal(int loopNumber) {
this.loopNumber = loopNumber;
}
// 参数1 打印内容, 参数2 进入哪一间休息室, 参数3 下一间休息室
public void print(String str, Condition current, Condition next) {
for (int i = 0; i < loopNumber; i++) {
lock();
try {
current.await();
System.out.print(str);
next.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
unlock();
}
}
}
}

Park Unpark 版

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
@Slf4j(topic = "c.Test31")
public class Test31 {

static Thread t1;
static Thread t2;
static Thread t3;
public static void main(String[] args) {
ParkUnpark pu = new ParkUnpark(5);
t1 = new Thread(() -> {
pu.print("a", t2);
});
t2 = new Thread(() -> {
pu.print("b", t3);
});
t3 = new Thread(() -> {
pu.print("c", t1);
});
t1.start();
t2.start();
t3.start();

LockSupport.unpark(t1);
}
}

class ParkUnpark {
public void print(String str, Thread next) {
for (int i = 0; i < loopNumber; i++) {
LockSupport.park();
System.out.print(str);
LockSupport.unpark(next);
}
}

private int loopNumber;

public ParkUnpark(int loopNumber) {
this.loopNumber = loopNumber;
}
}

本章小结

本章我们需要重点掌握的是

  1. 分析多线程访问共享资源时,哪些代码片段属于临界区
  2. 使用 synchronized 互斥解决临界区的线程安全问题
    1. 掌握 synchronized 锁对象语法
    2. 掌握 synchronzied 加载成员方法和静态方法语法
    3. 掌握 wait/notify 同步方法
  3. 使用 lock 互斥解决临界区的线程安全问题 掌握 lock 的使用细节:可打断、锁超时、公平锁、条件变量
  4. 学会分析变量的线程安全性、掌握常见线程安全类的使用
  5. 了解线程活跃性问题:死锁、活锁、饥饿
  6. 应用方面
    1. 互斥:使用 synchronized 或 Lock 达到共享资源互斥效果,实现原子性效果,保证线程安全。
    2. 同步:使用 wait/notify 或 Lock 的条件变量来达到线程间通信效果。
  7. 原理方面
    1. monitor、synchronized 、wait/notify 原理
    2. synchronized 进阶原理
    3. park & unpark 原理
  8. 模式方面
    1. 同步模式之保护性暂停
    2. 异步模式之生产者消费者
    3. 同步模式之顺序控制

文章作者: Yang Shiyu
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Yang Shiyu !
  目录